A study of automated construction and classification of decision tree classifier based on single-temporal MODIS data 基于单时相MODIS数据的决策树自动构建及分类研究
The second method uses Bayes classifier in the first step and decision tree classifier in the second step. ②以贝叶斯和决策树分别为第一、第二步使用分类器的两步方法;
Methods: The decision tree classifier is used as a tool and the rate of classification accuracy is used to measure the consistency. 方法:以决策树分类器为工具,用分类正确率衡量辨证一致性。
A Decision-Tree Classifier Hybrid Model of Eager Strategy and Lazy Strategy 急切式和懒惰式学习策略相结合的决策树分类模型
Application of decision tree classifier to analysis of gene microarray data 决策树分类器在分析基因微阵列数据中的应用
This paper analyzes the basic SVM and the SVM classifier multi-class classification, especially about the SVM decision tree, then proposes a method for partition of the set of classes on each node classifier to build up SVM decision tree. 本文分析基本的SVM和多类SVM分类器,重点讨论了SVM决策树,提出了一种结点分类器类集合划分方案来构造SVM决策树。
Based on binary partition method and decision tree, a binary neural tree network ( BNTN) classifier is proposed. 基于两类问题的树网络多分类方法将两分类方法和判决树相结合,利用两分类方法来减少神经网络的训练时间,利用树型分类器来提高识别率。
After study from training set, we select the features that best represent the pattern class of faces, and setup decision tree classifier models. 在对训练集进行训练之后,获得判定树模型。
In the course of researching, we accomplish a Decision Tree classifier. 完成了成绩分析决策树模型的建立。
An MSS spectral form correlation model and a histogram decision tree classifier are presented. 本文提出MSS数据波谱形态相关模型和直方图决策树分类法。
The paper briefly introduces the concept of privacy preserving data mining technology and studies the application of decision tree classifier in this particular field. 本文简单介绍了保持隐私的数据挖掘技术,并研究了决策树分类器在保持隐私的数据挖掘中的应用。
In this paper, a mathematical definition of decision tree classifier is given. 本文从理论上给出了树分类器的数学定义,探讨了分类树的优化和性能评价函数这两个关键问题。
A decision tree classifier is used to deal with the first task, which can find the load pattern preliminarily, and reduces the number of parameters to be adjusted. 本文采用决策树分类方法完成结构辨识的任务,初步找出负荷变化的模式,有效减少了系统需要优化调整的参数数量;
A study of decision tree classifier 树型分类器的研究
A set of parameters, the model parameters, histogram feature parameters, all bands correlation coefficients and spectral inversion features, are derived from MSS data histograms and the calibrated spectral curves. A histogram decision tree computer classifier is used to classify these parameters. 这一方法从数据直方图和矫正的波谱形态曲线中提取模型参数、直方图特征参数、各波段相关系数参数,同时提取波谱反转特性参数,然后利用直方图决策树分类器进行计算机判决分类。
The results of the classify show that the decision tree classifier has high correctness of classify, therefore manifest the decision tree algorithm have a extensive applied prospect in the field of medicinal data mining. 最后通过实验验证算法的有效性,实验结果表明利用该决策树分类器对白血病微阵列实验数据进行判别分析,分类准确率很高,证明了决策树算法在医学数据挖掘领域有着广泛的应用前景。
The paper selects decision tree as the basic classifier and several decision trees can be used together to implement multiple classifier integration. 系统以决策树作为基本的判别器,并用多个决策树组成多方案识别系统。
The principle and algorithm of the foundation, pruning of the decision tree classifier and also other relative aspects of the decision tree are studied. 系统研究了决策树的生成、修剪的原理和算法以及其它与决策树相关的问题;
Aiming at the important part-customer classifier in CRM, the thesis adopts the decision tree classification algorithm to construct the customer classifier after analyzing the existing DM classifier tools. 针对客户关系管理中客户分类这一重要环节,作者在分析了现有的数据挖掘分类工具的基础上,采用了决策树分类算法来构造客户分类器。
Decision tree classifier is an important data mining problem. The key issue in constructing the decision tree on data streams is to derive the best criterion of internal nodes. 决策树分类器是一个重要的数据挖掘问题,在数据流上建立决策树的关键问题是如何计算内部节点的最佳分裂标准。
Decision tree algorithms are applied to the data mining of the mammography classification, proposes a medical images classifier based on decision tree algorithm, the experiment results are given. 利用决策树算法对乳腺癌图像数据进行分类,实现了一个基于决策树算法的医学图像分类器,获得了分类的实验结果。
The main contributions in this dissertation are as follows: ( 1) Because the data sets for chemical classification are mostly continuous, the process of discretization is necessary to improve the performance of decision tree classifier. 全文主要内容如下:(1)由于化学分类数据集大多为连续型数据集,若要提高决策树分类器的性能,须先将连续型数据离散化,以方便进一步的处理过程。
Main topics include: 1. A new method to construct a fuzzy decision tree based classifier under AFS theory, called AFS fuzzy decision tree ( AFSDT) is proposed. 本文主要研究工作包括:1.在AFS理论框架下,提出了一种模糊决策树分类器,称为AFS决策树。
After extracting interference features, the classifier is structured using decision tree support vector machine. The classifier training algorithms and recognition algorithms are given, and optimal parameters are selected. 算法中,在提取干扰特征参数的基础上,使用决策树支持向量机构造了分类器,并给出了分类器的训练算法和识别算法,进行了参数最优化选取。
At the classification stage, multivariate decision tree is used as classifier for its speed and simplicity. 在分类阶段,我们使用分类速度快、结构简单的多变量决策树进行分类。
At the same time it maintains the advantage that the decision tree algorithm does not require users to master knowledge in the field of application but only to classify unknown dates by automatically building a classifier of sample collection. A combined optimizational decision tree algorithm is proposed. 同时保持了决策树算法不要求用户掌握应用领域的知识,完全通过样本集自动构建分类器对未知数据进行分类的优点。提出了一种组合优化决策树算法。
Based on decision tree and voting rules, multiclass SVM classifier is established and used for the gear box failure data classification and identification. 结合决策树和投票法则建立多分类SVM分类器,对齿轮箱故障数据进行分类和识别。
According to compare the results with decision tree, support vector machine, and RBF neural network, the neural network classifier with dynamic threshold has better forecasting accuracy, stability and generalization ability. 通过与决策树、支持向量机、RBF网络等方法的比较结果表明,基于动态阈值的神经网络分类器具有更好的预测精度、稳定性以及泛化能力。
With the extensive applications of classifying technology of data mining, decision tree classifier has achieved much research achievement. 随着数据挖掘分类技术的广泛应用,决策树在数据挖掘技术中的作用越来越重要,并且取得了众多的研究成果。